用分析师预期数据设计的因子,结构复杂、数据缺失多、与盈利因子、市值类因子相关性高,线性模型未必能够充分提炼其中独有的alpha信息。提升树模型是一种被广泛使用的机器学习方法,模型可以拟合非线性关系,可以自动处理数据缺失问题,使用方法灵活。报告将提升树模型应用于对分析师预期数据因子和股票收益率建模之中,在确保与盈利类因子、市值类因子低相关的前提下,尝试提取因子中或有的非线性alpha信息。None 镝数聚dydata,pdf报告,小数据,可视数据,表格数据
最新图说查看更多
    * 本报告来自网络,如有侵权请联系删除

    金融工程:用树模型提取分析师预期数据中的非线性alpha信息

    收藏

    价格免费
    年份2020
    来源天风证券
    数据类型数据报告
    关键字金融机构, 金融科技
    店铺镝数进入店铺
    发布时间2021-08-30
    PDF下载

    数据简介

    用分析师预期数据设计的因子,结构复杂、数据缺失多、与盈利因子、市值类因子相关性高,线性模型未必能够充分提炼其中独有的alpha信息。提升树模型是一种被广泛使用的机器学习方法,模型可以拟合非线性关系,可以自动处理数据缺失问题,使用方法灵活。报告将提升树模型应用于对分析师预期数据因子和股票收益率建模之中,在确保与盈利类因子、市值类因子低相关的前提下,尝试提取因子中或有的非线性alpha信息。

    报告预览

    *本报告来自网络,如有侵权请联系删除
    相关「可视数据」推荐
    相关「数据报告」推荐
    `
    会员特惠
    客 服

    镝数聚官方客服号

    小程序

    镝数官方小程序

    回到顶部
    `