本篇是系统化资产配置系列报告的第三篇,对如何利用机器学习算法进行短期市场择时进行了系统介绍。全球金融市场每天产生海量的各类数据,如何筛选并有效利用这些数据来预测股票市场走势一直是一个重要但棘手的问题。短期择时面临的主要困难包括;1.短期市场走势受情绪等因素影响较大;2.如何筛选有效因子;3.非线性因子如何建模;4.因子相关性问题如何解决;5.因子较多时如何避免过拟合等。幸运的是,机器学习技术的发展给我们提供了一条有效利用并筛选大量因子数据的途径。本报告中,我们将股市未来的涨和跌定义为一个分类问题,利用机器学习算法来对Wind全A指数的未来涨跌建模。 我们利用51种日频因子数据构建基于决策树的AdaBoost分类器,从而对下一交易日Wind全A指数的涨(1)跌(-1)做出预测。51种因子中包含回购利率,信用利差、南华商品指数收益率、金油比、标普500指数等多种类型的市场信息。回测结果显示,若不考虑交易成本,滚动测算的AdaBoost多空择时策略在2014年10月27日至2019年8月30日获得了41.31%的年化收益率和1.41的收益风险比,纯多头策略的年化收益率达到24.67%,收益风险比达到0.98,而同期简单持有策略的年化收益率和收益风险比仅有7.66%和0.26。 【更多详情,请下载:系统化资产配置系列之三:基于AdaBoost机器学习算法的市场短期择时策略】 镝数聚dydata,pdf报告,小数据,可视数据,表格数据
最新图说查看更多
    * 本报告来自网络,如有侵权请联系删除

    系统化资产配置系列之三:基于AdaBoost机器学习算法的市场短期择时策略

    收藏

    价格免费
    年份2019
    来源兴业证券
    数据类型数据报告
    关键字股市, 股票, 证券
    店铺镝数进入店铺
    发布时间2019-12-03
    PDF下载

    详情描述

    本篇是系统化资产配置系列报告的第三篇,对如何利用机器学习算法进行短期市场择时进行了系统介绍。全球金融市场每天产生海量的各类数据,如何筛选并有效利用这些数据来预测股票市场走势一直是一个重要但棘手的问题。短期择时面临的主要困难包括;1.短期市场走势受情绪等因素影响较大;2.如何筛选有效因子;3.非线性因子如何建模;4.因子相关性问题如何解决;5.因子较多时如何避免过拟合等。幸运的是,机器学习技术的发展给我们提供了一条有效利用并筛选大量因子数据的途径。本报告中,我们将股市未来的涨和跌定义为一个分类问题,利用机器学习算法来对Wind全A指数的未来涨跌建模。
    
    我们利用51种日频因子数据构建基于决策树的AdaBoost分类器,从而对下一交易日Wind全A指数的涨(1)跌(-1)做出预测。51种因子中包含回购利率,信用利差、南华商品指数收益率、金油比、标普500指数等多种类型的市场信息。回测结果显示,若不考虑交易成本,滚动测算的AdaBoost多空择时策略在2014年10月27日至2019年8月30日获得了41.31%的年化收益率和1.41的收益风险比,纯多头策略的年化收益率达到24.67%,收益风险比达到0.98,而同期简单持有策略的年化收益率和收益风险比仅有7.66%和0.26。
    
    【更多详情,请下载:系统化资产配置系列之三:基于AdaBoost机器学习算法的市场短期择时策略】

    报告预览

    *本报告来自网络,如有侵权请联系删除
    相关「可视数据」推荐
    相关「数据报告」推荐
    `
    会员特惠
    客 服

    镝数聚官方客服号

    小程序

    镝数官方小程序

    回到顶部
    `